Universal tool for simulation of complex systems
Володимир Миколайович Соловйов
Kryvyi Rih State Pedagogical University
PDF (Українська)

Keywords

complex system
synergistic paradigm of complexity
fractals
nonlinear dynamics
econophysics
time series
complex networks

How to Cite

Соловйов, В. (2017). Universal tool for simulation of complex systems. New Computer Technology, 15, 10-14. https://doi.org/10.55056/nocote.v15i0.617
PDF (Українська)

Abstract

The aim of this study is to determine the criteria of universal simulation tool for complex systems. Objectives of the study is to determine degrees of complexity for different systems. The object of study is the simulation of complex systems. Subject of research: synergetic paradigm of complexity as a tool for identifying and predicting natural and artificial systems. Results of the study: analyzes new approaches to modeling complex systems of different nature. It was shown that synergistic paradigm of complexity has the necessary tools to set universal adequate identification and forecasting of the basic patterns of both natural and artificial systems. These primarily include the theory of fractals, nonlinear dynamics, econophysics, theory of complex networks. Distinguished two classes of problems: (1) the task of comparative classification and (2) monitoring and warning of critical and crisis phenomena. The first class of problems comes down to the selection of so-called measures of system complexity, which make an ability to classify systems by complexity. Also more complex system is a robust, resistant to disturbances. Exploring the dynamics of the selected measures of complexity and comparing it with the original dynamics of a complex system can be built indicators and predictors of critical and crisis phenomena. Conclusion. The effectiveness of the proposed instruments demonstrated by the statistical implementations of complex systems of different nature, presented in the form of time series: physical, technical, financial, biomedical, cognitive and so on. Research results recommended to create decision support systems, in particular for monitoring and forecasting unwanted crisis in complex systems.

PDF (Українська)

References

1. Малинецкий Г. Г. Теория самоорганизации. На пороге IV парадигмы / Г. Г. Малинецкий // Компьютерные исследования и моделирование. – 2013. – Т. 5, № 3. – С. 315-366.
2. Пригожин И. От существующего к возникающему: Время и сложность в физических науках / И. Пригожин // Серия "Синергетика: от прошлого к будущему" №6. – М. : URSS, 2015. – 304 с.
3. Дербенцев В. Д. Синергетичні та еконофізичні методи дослідження динамічних та структурних характеристик економічних систем : [монографія] / В. Д. Дербенцев, О. А. Сердюк, В. М. Соловйов, О. Д. Шарапов. – Черкаси : Брама-Україна, 2010. – 300 с.
4. Boccaletti S. Complex networks: Structure and dynamics / S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang // Physics Reports. – 2006. – V. 424. – Issues 4-5 (February). – P. 175-308.
5. Соловйов В. М. Моделювання складних систем : навчально-методичний посібник для самостійного вивчення дисципліни / В. М. Соловйов, О. А. Сердюк, Г. Б. Данильчук. – Черкаси : Видавець О. Ю. Вовчок, 2016. – 204 с.
6. Browse time-series data by category [Electronic resource] // Comp-Engine Time Series. – 2017. – Access mode : http://www.comp-engine.org/timeseries/browse-data-by-category.